The structures of the ditellurides of niobium and tantalum which have been worked out as part of this project, have similar metal-metal chains parallel to the b axis except that the chains are made of three rows of metal atoms rather than two. Details of this work are presented in a companion paper (Brown, 1966).

References

Buerger, M. J. (1959). Vector Space. New York: John Wiley.
Brown, B. E. (1966). Acta Cryst. 20, 264.
Busing, W. \& Levy, H. A. (1959). Oak Ridge National Laboratory Central Files, No. 59-4-37.

Geller, S. (1961). Acta Cryst. 14, 1026.
Goldschmidt, V. M. (1919). Trans. Faraday Soc. 25, 279.
Jellinek, F. (1961). Nature, Lond. 192, 1065.
Knop, O. \& Haraldsen, H. (1956). Canad. J. Chem. 34, 1142.

Marinder, B. \& Magnéli, A. (1957). Acta Chem. Scand.11, 1635.

Marinder, B., Dorm, E. \& Seleborg, M. (1962). Acta Chem. Scand. 16, 293.
Nitsche, R., Bolsterli, H. U. \& Lichtensteiger, M. (1961). Phys. Chem. Solids, 21, 199.

Phillips, D. C. (1954), Acta Cryst. 7, 746.
Puotinen, D. \& Newnham, R. E. (1961). Acta Cryst. 14, 691.

Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.

The Crystal Structure of the Strontium and Lead Tetraborates, $\mathrm{SrO} . \mathbf{2 B}_{2} \mathrm{O}_{3}$ and $\mathrm{PbO} . \mathbf{2 B}_{2} \mathrm{O}_{3}$

By A.Perloff and S. Block
National Bureau of Standards, Washington, D.C., U.S.A.

(Received 29 December 1964 and in revised form 3 June 1965)
$\mathrm{SrO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$ and $\mathrm{PbO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$ are isostructural. These compounds crystallize in the orthorhombic system, $P 2_{1} n m$, with two formula units in a cell of dimensions $a=4.237, b=4.431, c=10.706 \AA$ for $\mathrm{SrO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$, and $a=4 \cdot 244, b=4 \cdot 457, c=10 \cdot 840 \AA$ for $\mathrm{PbO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$. A detailed structure analysis was carried out for the strontium compound only.

The structure was solved by conventional Patterson and electron-density syntheses utilizing the heavy atom to establish the initial phases. Least-squares refinement on three-dimensional data yielded a residual $R=7 \cdot 1 \%$.

The results reveal an unusual type of borate framework. All boron atoms are tetrahedrally coordinated. The unusual feature is the occurrence of an oxygen atom common to three tetrahedra.

Although the tetrahedra form a three-dimensional network by corner sharing, the borate network gives the appearance of a layer-like structure because there are comparatively few links in the c direction. The layers can be described in terms of chains (parallel to a) of six-membered rings having B-O edges in common. These chains are joined by non-ring oxygens to form layers parallel to the $a b$ plane.

The Sr coordination is not clearly defined. There are nine nearest-neighbor oxygen atoms at distances ranging from 2.52 to $2.84 \AA$. There are six more oxygen atoms at 3.04 to $3.20 \AA$ which could conceivably be considered as part of the Sr coordination sphere.

Introduction

In previous studies (Weir \& Schroeder, 1964; Block, Perloff \& Weir, 1964) on a series 'of $\mathrm{M}^{\mathrm{II}} \mathrm{O} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$ compounds ($\mathrm{M}=\mathrm{Ca}, \mathrm{Ba}, \mathrm{Zn}, \mathrm{Sr}, \mathrm{Pb}$) it has been observed that the Sr and Pb borates are isostructural with each other, but apparently of a structure type completely different from the others. It was also noted that the Sr and Pb borates had an unusually dense structure compared with most known borates, which suggested the possibility of a new borate structure type. A singlecrystal X-ray structure analysis was undertaken on $\mathrm{SrO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$ to investigate this possibility. Only the Sr compound is reported in detail, but the structure is valid for the Pb compound.

Cell and space group

The cell dimensions and diffraction aspect have been previously reported by Block, Perloff \& Weir (1964) with axial designations interchanged from those used in this work. The present structure is based on the following orthorhombic cell data* for $\mathrm{SrO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$:

$$
\begin{array}{ll}
a=4.237 \pm 0.004 \AA & \text { Space group } P 2{ }_{1} n m \\
b=4.431 \pm 0.004 & Z=2 \\
c=10.706 \pm 0.010 & \varrho \text { (calc. })=4.01 \\
\text { Systematic extinctions: } & h 0 l, h+l=2 n+1
\end{array}
$$

* The uncertainties quoted on the cell dimensions are standard deviations based on least-squares refinement of powder pattern data.

The isostructural $\mathrm{PbO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$ has the cell dimensions:

$$
\begin{aligned}
& a=4.244 \pm 0.004 \AA \\
& b=4.457 \pm 0.004 \\
& c=10.840 \pm 0.010
\end{aligned}
$$

The observed diffraction aspect $P^{*} n^{*}$ allows Pmnm and $P m n 2_{1}$ (alternatively $P 2_{1} n m$) as possible space groups. A complete lack of unobserved reflections, other than space group extinctions, favored the noncentrosymmetric choice, because the normal intensity distribution (Wilson, 1949) predicts a greater proportion of very weak reflections, which implies a greater proportion of unobserved reflections, for centrosymmetric space groups than for non-centrosymmetric ones.

The Howells, Phillips \& Rogers (1950) $N(z)$ test on the 0 kl data also indicated a non-centrosymmetric intensity distribution, but this was more misleading than helpful inasmuch as that projection, according to the final structure, should have had a center of symmetry. Presumably this discrepancy is due to the presence of a special position heavy atom which violates the 'random' electron-density distribution on which the statistical methods are based. The result of the $\mathrm{N}(z)$ test was accepted for the indexing of the data with the intention of obtaining the space group in the conventional orientation (International Tables for X-ray Crystallography, 1952). The conventional orientation was not obtained because of the erroneous indication of the $N(z)$ test.
The final choice of the space group was dictated by the impossibility of getting a chemically satisfactory structure consistent with the Patterson map while retaining a mirror plane normal to the very short a axis.

Experimental

A few small, needle-shaped, single crystals were obtained by partially fusing a sample of the proper stoichiometry. Intensity data were obtained from a crystal 0.135 mm long and with minimum and maximum cross-sectional dimensions of 0.034 and 0.054 mm . Three-dimensional data ($h k l, h=0,1,2,3$) about the needle axis, which coincides with the a axis, were collected with an integrating Weissenberg camera using the usual multiple-film techniques. Copper $K \alpha$ ($\lambda=$ $1.542 \AA$) radiation was used. All of the 225 possible independent reflections were observed. Most of the intensities were measured with a densitometer and the very weak reflections were estimated visually. Lorentz and polarization corrections were applied. The crystal was small enough for absorption effects to be no worse than 15% which was the estimated accuracy of the data, so no absorption corrections were made. Neglecting the absorption corrections did not introduce any serious errors in the results since in the final refinement the strongest intensities were omitted to reduce the influence of extinction and, indirectly, absorption, since
all of the very strong low order reflections which would have the largest absorption errors were included in the omitted group.

Structure determination

In either of the possible space groups the Sr atom must occupy a twofold special position on a mirror plane which has, effectively, only one variable parameter y. In the centrosymmetric space group, x and z are fixed by symmetry, while in the non-centrosymmetric versions one is fixed by symmetry and the other must be arbitrarily fixed to establish an origin. Thus, the Sr position could be established before deciding on the true space group. Once the correct space group was established the structure determination reduced to a simple heavy atom problem.
The 0 kl Patterson projection provided an initial y parameter of 0.2126 and the x and z parameters were fixed at zero. A single superposition on the $\mathrm{Sr}-\mathrm{Sr}$ peak yielded four new peaks which could be sensibly interpreted as oxygen positions only if the space group were $P 2_{1} \mathrm{~nm}$. In an attempt to confirm this space group the Howells, Phillips \& Rogers (1950) N(z) test was made on the 0 kl data. Unfortunately, this indicated a noncentric projection which implied the space group $P m n 2_{1}$. At this point it was felt that Pmnm could be safely discarded from consideration. To resolve the dilemma between the two settings of the non-centrosymmetric space group, all the data were first put on a common scale by setting $\Sigma F_{o}=\Sigma F_{c}$ (Sr only) for each level, and then three-dimensional electron-density maps, based on Sr phases, were made for both settings.

Only the map using $P 2{ }_{1} n m$ symmetry contained the correct number of prominent peaks and reasonable distances between the peaks. $P 2_{1} n m$ was then accepted as the correct space group. Oxygen positions were obtained from the electron density map. A subsequent difference Fourier map unambiguously established the boron positions.

Positional parameters and individual isotropic temperature factors for all the atoms were refined with a modified version of the Busing, Martin \& Levy (1962), full-matrix least-squares program. The program minimizes the quantity $R^{\prime}=\Sigma w\left(F_{o}-F_{c}\right)^{2}$. The weighting scheme was based on the estimated errors of the uncorrected relative intensities. The original intensity scale ranged from 1 to 823 . Most reflections were estimated to have an error of 15%. The weighting factor (w) was taken as unity for all reflections with an estimated error, $\sigma\left(I_{o}\right) \leq 18$ (which was equivalent to an $I_{o}=120$) and as $18 / 0 \cdot 15 I_{o}$ for all reflections with an estimated $\sigma\left(I_{o}\right)>18$ (equivalent to $I_{o}>120$). Refinement was continued until all final shifts were less than one-tenth of the standard deviation. Individual level scale factors were obtained by setting $\Sigma F_{o}=\Sigma F_{c}$ for each level between successive least-squares cycles. The scale factors could not be included as parameters in the least-squares refinement because there were large interactions between the various scale factors and the Sr temperature

Table 1. Final atomic coordinates and standard deviations for $\mathrm{SrO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$ from least-squares refinement

	$x\left(\sigma_{x}\right)$	$y\left(\sigma_{y}\right)$	$z\left(\sigma_{z}\right)$	$B\left(\sigma_{B}\right)$
Sr	0	$0.2119(0.0003)$	0	$0.41(0.02)$
$\mathrm{O}(1)$	$0.585(0.005)$	$0.772(0.003)$	0	$0.75(0.28)$
$\mathrm{O}(2)$	$0.547(0.004)$	$0.357(0.002)$	$0.141(0.001)$	$0.63(0.16)$
$\mathrm{O}(3)$	$0.144(0.004)$	$0.725(0.002)$	$0.135(0.001)$	$0.70(0.19)$
$\mathrm{O}(4)$	$0.147(0.003)$	$0.132(0.002)$	$0.277(0.001)$	$0.53(0.17)$
$\mathrm{B}(1)$	$-0.041(0.009)$	$0.327(0.003)$	$0.378(0.001)$	$0.68(0.25)$
$\mathrm{B}(2)$	$-0.006(0.012)$	$0.823(0.003)$	$0.248(0.001)$	$0.76(0.24)$

factor. As the refinement proceeded it was noted that the strongest intensities had calculated values appreciably higher than observed ones. This was attributed to extinction effects and the strongest twenty-one reflections (based on the uncorrected intensities) were arbitrarily eliminated from the final refinement. The final R value, for the 204 reflections used in the final refinement, is $7 \cdot 1 \%$ (for all 225 reflections $R=10 \cdot 1 \%$).

All of the computations up to this point were done with the X-ray 63 system of programs developed at the University of Maryland (1964) and at the University of Washington, Atomic scattering factors used in the refinements were O^{-}and neutral B (International Tables for X-Ray Crystallography, 1962) and Sr^{2+} (Thomas \& Umeda, 1957). The final distances, angles, and associated errors were obtained with the use of the Busing \& Levy Function and Error Program (1959).

Results and discussion

The final least-squares results for the atomic parameters of the seven atoms in the asymmetric unit are given in Table 1. Sr and $\mathrm{O}(1)$ are in the twofold special position ($x, y, 0 ; \frac{1}{2}+x, \bar{y}, \frac{1}{2}$). The remaining three oxygen atoms and the two boron atoms are in the fourfold general position $\left(x, y, z ; x, y, z ; \frac{1}{2}+x, y, \frac{1}{2}-z\right.$;

Table 2. SrO. $2 \mathrm{~B}_{2} \mathrm{O}_{3}$ bond distances (\AA), angles $\left({ }^{\circ}\right)$ and their standard deviations*
Values in parenthesis have been calculated from the results of Krogh-Moe (1964)

Sr-O Krogh-Moe (1964)	
nearest neighbors	
$\mathrm{Sr}^{1}-\mathrm{O}(1)^{3}$	2.626 ± 0.020
$\mathrm{Sr}^{1}-\overline{\mathrm{O}(2)}{ }^{3}$ \& O(2) ${ }^{4}$	2.523 ± 0.016
$\mathrm{Sr}^{1}-\mathrm{O}(2)^{1} \& \mathrm{O}(2)^{2}$	2.836 ± 0.017
$\mathrm{Sr}^{1-\mathrm{O}(3)^{1} \& \mathrm{O}(3)^{2}}$	$2 \cdot 666 \pm 0.012$
$\mathrm{Sr}^{1}-\mathrm{O}(3)^{1} \& \overline{\mathrm{O}}(3)^{2}$	$2 \cdot 764 \pm 0.012$

second nearest neighbors

$\mathrm{Sr}^{1}-\mathrm{O}(1)^{3}$	3.042 ± 0.018	
$\mathrm{Sr}^{1}-\mathrm{O}()^{1}$	1^{1}	3.152 ± 0.021
$\mathrm{Sr}^{1}-\mathrm{O}(4)^{1} \& \mathrm{O}(4)^{2}$	3.050 ± 0.011	
$\mathrm{Sr}^{1}-\mathrm{O}(4)^{5} \& \mathrm{O}(4)^{6}$	3.204 ± 0.012	
$\mathrm{~B}-\mathrm{O}$ distances		
$\mathrm{B}(1)^{1}-\mathrm{O}(1)$	1.474 ± 0.023	(1.37)
$-\mathrm{O}(2)$	1.466 ± 0.020	(1.47)
$-\mathrm{O}(3)$	1.365 ± 0.044	(1.55)
$-\mathrm{O}(4)^{1}$	1.597 ± 0.027	(1.50)
$\mathrm{B}(2)^{7}-\mathrm{O}(2)^{1}$	1.455 ± 0.019	(1.53)
$-\mathrm{O}(3)^{7}$	1.430 ± 0.033	(1.38)
$-\mathrm{O}(4)^{1}$	1.507 ± 0.059	(1.48)
$-\mathrm{O}(4)^{8}$	1.546 ± 0.029	(1.61)

Table 2 (cont.)

$\mathrm{O}-\mathrm{B}-\mathrm{O}$ angles		
$\mathrm{O}(1)-\mathrm{B}(1)^{1}-\mathrm{O}(2)$	$108 \cdot 3 \pm 1 \cdot 7$	(117.3)
$\mathrm{O}(1)-\mathrm{B}(1)^{1}-\mathrm{O}(3)$	$113 \cdot 3 \pm 2 \cdot 0$	(96.4)
$\mathrm{O}(1)-\mathrm{B}(1)^{1-\mathrm{O}}(4)^{1}$	$105 \cdot 2 \pm 2 \cdot 0$	(117.8)
$\mathrm{O}(2)-\mathrm{B}(1)^{1}-\mathrm{O}(3)$	$113 \cdot 2 \pm 2 \cdot 0$	(83.0)
$\mathrm{O}(2)-\mathrm{B}(1)^{1}-\mathrm{O}(4)^{1}$	$107 \cdot 3 \pm 1 \cdot 8$	(123.2)
$\mathrm{O}(3)-\mathrm{B}(1)^{1-} \mathrm{O}(4)^{1}$	$109 \cdot 0 \pm 1 \cdot 6$	(103.7)
$\mathrm{O}(2)^{1-\mathrm{B}}(2)^{7}-\mathrm{O}(3)^{7}$	$117 \cdot 3 \pm 2 \cdot 5$	(127.9)
$\mathrm{O}(2)^{1-\mathrm{B}}(2)^{7}-\mathrm{O}(4)$	$111 \cdot 4 \pm 2 \cdot 9$	(113.5)
$\left.\mathrm{O}(2)^{1-\mathrm{B}} \mathrm{B}^{7}\right)^{7}-\mathrm{O}(4)^{8}$	$104 \cdot 7 \pm 1 \cdot 9$	(85-2)
$\mathrm{O}(3)^{7}-\mathrm{B}(2)^{7}-\mathrm{O}(4)^{1}$	$109 \cdot 0 \pm 2 \cdot 2$	(111.0)
$\mathrm{O}(3)^{7-\mathrm{B}}(2)^{7}-\mathrm{O}(4)^{8}$	$104 \cdot 7 \pm 2 \cdot 8$	(106.1)
$\mathrm{O}(4)^{1-\mathrm{B}}(2)^{7}-\mathrm{O}(4)^{8}$	$109 \cdot 2 \pm 1 \cdot 9$	(107.3)
$\mathrm{O}-\mathrm{O}$ intratetrahedral distances		
$\mathrm{O}(1)-\mathrm{O}(2)$	$2 \cdot 383 \pm 0.015$	(2.42)
$\mathrm{O}(1)-\mathrm{O}(3)$	2.371 ± 0.026	(2.18)
$\mathrm{O}(1)-\mathrm{O}(4)^{1}$	$2 \cdot 440 \pm 0 \cdot 012$	(2.46)
$\mathrm{O}(2)-\mathrm{O}(3)$	$2 \cdot 365 \pm 0.022$	(2.00)
$\mathrm{O}(2)-\mathrm{O}(4)^{1}$	$2 \cdot 469 \pm 0.014$	(2.61)
$\mathrm{O}(3)-\mathrm{O}(4)^{1}$	$2 \cdot 415 \pm 0 \cdot 023$	(2.39)
$\left.\mathrm{O}(2){ }^{1-\mathrm{O}} 3\right)^{7}$	$2 \cdot 464 \pm 0 \cdot 016$	(2.61)
$\mathrm{O}(2){ }^{1-\mathrm{O}}$ (4) ${ }^{1}$	$2 \cdot 447 \pm 0 \cdot 021$	(2.52)
$\mathrm{O}(2){ }^{1}-\mathrm{O}(4)^{8}$	$2 \cdot 377 \pm 0 \cdot 014$	(2.12)
$\mathrm{O}(3)^{7-O(4)}{ }^{1}$	2.391 ± 0.023	(2.37)
$\mathrm{O}(3)^{7}-\mathrm{O}(4)^{8}$	2.356 ± 0.015	(2.39)
$\mathrm{O}(4)^{1-O}(4)^{8}$	$2 \cdot 488 \pm 0 \cdot 012$	(2.49)

* The atomic designations have been chosen so that this listing corresponds to distances shown in Figs. 3 \& 4. Unsuperscripted atoms have parameters as given in Table 1. The superscripts refer to the following operations: (1) $\frac{1}{2}+x, 1-y, \frac{1}{2}-z$; (2) $\frac{1}{2}+x, 1-y, \frac{1}{2}+z$; (3) $-\frac{1}{2}+x, 1-y, \frac{1}{2}-z$; (4) $-\frac{1}{2}+x, 1-y$, $\frac{1}{2}+z$; (5) $x, 1+y, z$; (6) $x, 1+y, 1-z$; (7) $1+x, y, z$; (8) $1+x$, $1+y, z$. For the underlined atoms, substitute $2-y$ for $1-y$ in the transformation indicated by the superscript.
$\left.\frac{1}{2}+x, \bar{y}, \frac{1}{2}+z\right)$. All pertinent interatomic ristances and angles are listed in Table 2.

The structure consists of a three-dimensional borate network, which contains channels parallel to \mathbf{b}. The Sr ions fit into these channels. This can most clearly be seen in the (010) projection (Fig. 1). All boron atoms are tetrahedrally coordinated and all tetrahedra share all corners. The structure contains the unusual feature of an oxygen atom, $\mathrm{O}(4)$, coordinated to three boron atoms. Such a coordination for oxygen has been reported in only two previous structures, the hydrated strontium borate mineral tunellite (Clark, 1963) and $\mathrm{B}_{2} \mathrm{O}_{3}$ (Berger, 1953).

The borate structure could be described in terms of cross-linked chains of tetrahedra, but in view of the common occurrence of six-membered $\mathrm{B}-\mathrm{O}$ rings in structures rich in $\mathrm{B}_{2} \mathrm{O}_{3}$ it seems more significant to consider it as built up of chains, parallel to the a axis, of six-membered rings that share edges. These chains

Fig. 1. (010) projection. The numbers are the y parameters. $\mathrm{Sr}-\mathrm{O}$ nearest neighbor coordination shown by dashed lines. $\mathrm{B}-\mathrm{O}$ bonding shown by solid lines. Lines ending in short arcs indicate bonding to atoms in the cell above.

Fig. 2. Borate tetrahedra layer between $z=0$ and $z=\frac{1}{2}$ viewed down the c axis. Sr atoms have been omitted.

Fig.3. (001) projection between $z=0$ and $z=\frac{1}{2}$ showing $B-O$ distances (\AA). Sr atoms have been omitted. Large circles are oxygen atoms, small open circles are $B(1)$ and small solid circles are $B(2)$ atoms. Some distances have been repeated to show the values around the six-membered rings as well as around each type of boron atom. The numbered atoms are those listed in Table 1.
are then connected through the non-ring general position oxygen, $\mathrm{O}(2)$, to form layers parallel to the (001) plane (Fig.2). These layers are then linked through the special position oxygens to give the three-dimensional network.

An examination of the $\mathrm{B}-\mathrm{O}$ distances shows a rather large range, $1.36-1.60 \AA$, although their average is $1 \cdot 48 \AA$ the normal tetrahedral value. As might be expected the bonds around the three-coordinated oxygen are significantly longer than the average with compensating shortening of other bonds. It should be noted (Fig.3) that the very long and very short B-O distances are all involved in ring formation while the non-ring distances are more nearly normal. This suggests that the six-membered borate ring is a sufficiently favored configuration, energetically, to permit sizable distortions of the bond lengths from their typical values. The angles all lie within the range found in other borate structures.

The nearest neighbor $\mathrm{Sr}-\mathrm{O}$ distances are given in Table 2 and Fig.4. The $2.63 \AA$ distance represents only one interaction while the other bonds all are repeated by the mirror plane to give a total coordination of nine. The actual coordination is not clearly defined because there are six next-nearest oxygen neighbors, at $3.04-$ $3 \cdot 20 \AA$ distances, which probably have some significant part in the Sr coordination.

In summary, we have the first example of an anhydrous borate which has only tetrahedral boron and in which all the boron and oxygen atoms are involved in the borate network. It is the first anhydrous borate containing an oxygen linked to three boron atoms. Also, it is another example to show that the rules for deriving the number of tetrahedral and triangular borons from the bulk composition, derived by Edwards \& Ross (1960) for hydrated borates and extrapolated by Krogh-Moe $(1960,1962)$ to anhydrous borates, are not universally valid. For $\mathrm{SrO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$ these rules would predict that half of the boron atoms would be

Fig.4. (001) projection between $z=0$ and $z=\frac{1}{2}$ showing $\mathrm{Sr}-\mathrm{O}$ nearest neighbor distances (\AA). The 2.63 value represents a single distance lying in the mirror plane. The other values are repeated by the mirror plane. The numbered atoms are those listed in Table 1.
in tetrahedral and half in triangular coordination, whereas all of the borons are found to have tetrahedral coordination. The danger of relying on bulk composition to predict structure is well illustrated by the completely unrelated structures of $\mathrm{SrO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$ and BaO . $2 \mathrm{~B}_{2} \mathrm{O}_{3}$ (Block \& Perloff, 1965).

Note added in revision

Shortly after this paper was submitted to the editor, a structure for $\mathrm{SrO} .2 \mathrm{~B}_{2} \mathrm{O}_{3}$ was reported by Krogh-Moe (1964). His results agree with ours in the gross features of the structure, but are sufficiently different in detail to suggest the possibility of some error. To facilitate comparison our results have been converted to KroghMoe's origin and space group orientation $\left(P m n 2_{1}\right)$ by the transformation $x^{\prime}=z, y^{\prime}=-y+\frac{1}{2}, z^{\prime}=-x$ followed, where necessary, by the appropriate space group transformation. These are listed in Table 4. The agreement for all of the x^{\prime} and y^{\prime} parameters is very good, but the z^{\prime} parameters for $\mathrm{O}(2)$ and $\mathrm{B}(1)$ differ by much larger amounts than can be accepted on the basis of the reported standard deviations. The source of the error is obvious. An electron-density map derived from phases based only on the Sr contribution contains false mirror planes at $z^{\prime}=0$ and $\frac{1}{2}$. It seems clear that the positions chosen by Krogh-Moe for $\mathrm{O}(2)$ and $\mathrm{B}(1)$ belong to one enantiomorph while the rest of his positions belong to the other enantiomorph. Since these misplaced atoms lie quite close to the false mirrors, the errors on the B-O distances are not very large. However, the influence on the $\mathrm{O}-\mathrm{B}-\mathrm{O}$ angles is quite marked and the errors, also, show up in the abnormal $\mathrm{O}-\mathrm{O}$ distances of a given borate tetrahedron. The distance and angles involving
boron and oxygen as computed from Krogh-Moe's parameters and cell dimensions have been added to Table 2 for comparative purposes. The fact that our values all fall within the range typical of tetrahedral borate groups, while some of Krogh-Moe's are quite abnormal, strongly supports the correctness of the structure as reported in this paper.
As added confirmation we have refined, by least squares, our parameters with Krogh-Moe's observed data (case I) and his parameters with our observed data (case II) with the following results.

Case I: The cell dimensions, space group orientation, and the 189 observed structure factors as reported in the Krogh-Moe (1964) paper were used. One overall scale factor, all position parameters (except $\mathrm{Sr} x^{\prime}$ and z^{\prime}, and $\mathrm{O}(1) x^{\prime}$) and all individual isotropic temperature factors were varied for five cycles. Unit weights were used. The starting parameters were those given in Table 4. By allowing temperature factors to become negative (to compensate for the absorption problem) the structure reported in this paper refined to $R=$ 11.5% (as opposed to Krogh-Moe's $12 \cdot 6 \%$). All of the position parameters shifted less than one standard deviation during the refinement.

Case II: In an effort to test the two structures under identical refinement conditions, Krogh-Moe's parameters were converted to our origin and space group orientation and refined with our data and weighting scheme. This refinement was carried out in the same stepwise manner as our original refinement. Each step consisted of a structure factor calculation to adjust the four scale factors followed by four cycles of leastsquares refinement of variable position parameters and

Table 3. Observed and calculated structure factors
Individual level scale factors are $s_{1}=24 \cdot 31, s_{2}=23 \cdot 58, s_{3}=23 \cdot 97, s_{4}=21 \cdot 48$. Reffections marked * were omitted from the final refinement.

Table 4. Comparison between the results of Krogh-Moe (1964) and the present results, which have been converted to his cell and space group Pmn 2_{1} All parameters have been multiplied by 1000
Atom designation

					From		
This	From	This paper		Krogh-Moe's paper			
paper	Krogh-Moe's paper	x^{\prime}	y^{\prime}	z^{\prime}	x	y	z
Sr	Sr	0	288	0	0	289	0
$\mathrm{O}(1)$	$\mathrm{O}(1)$	0	728	415	0	728	454
$\mathrm{O}(2)$	$\mathrm{O}(2)$	359	858	953	359	857	064
$\mathrm{O}(3)$	$\mathrm{O}(4)$	365	225	356	365	226	335
$\mathrm{O}(4)$	$\mathrm{O}(3)$	223	632	353	221	631	335
$\mathrm{~B}(1)$	$\mathrm{B}(1)$	378	173	041	379	174	976
$\mathrm{~B}(2)$	$\mathrm{B}(2)$	248	677	006	246	671	963

individual isotropic temperature factors. Convergence was initially quite slow, but after three steps (a total of three adjustments of the scale factors by structure factor calculation and twelve cycles of least squares) KroghMoe's model refined to a result identical with ours.
The authors feel that the combination of more reasonable interatomic distances and angles, a lower R value of our structure with Krogh-Moe's data, and the ultimate refinement of his structure into ours with our data provides ample proof of the correctness of the structure as reported in the present paper.

The authors wish to thank Miss Ellen J. Bailey for her invaluable assistance in reading the intensity data and drawing the illustrations.

References

Berger, S. V. (1953). Acta Chem. Scand. 7, 611.
Block, S., Perloff, A. \& Weir, C. E. (1964). Acta Cryst. 17, 314.
Block, S. \& Perloff, A. (1965). Acta Cryst. 19, 297.

Busing, W. R. \& Levy, H. A. (1959). A Crystallographic Function and Error Program for the IBM 704. Oak Ridge National Laboratory Report 59-12-3.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). A Fortran Crystallographic Least Squares Program, ORNL-TM-305. Oak Ridge, Tennessee.
Clark, J. R. (1963). Science, 141, 1178.
Edwards, J. O. \& Ross, V. (1960). J. Inorg. Nucl. Chem. 15, 329.

Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
International Tables for X-ray Crystallography (1952). Vol. I, p. 117. Birmingham: Kynoch Press.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Krogh-Moe, J. (1960). Acta Cryst. 13, 889.
Krogh-Moe, J. (1962). Acta Cryst. 15, 190.
Krogh-Moe, J. (1964). Acta Chem. Scand. 18, 2055.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293. University of Maryland Computer Science Center (1964). Technical Report TR-64-6.
Weir, C. E. \& Schroeder, R. A. (1964). J. Res. Nat. Bur. Stands. Phys. \& Chem. 68A, (5), 465.
Wilson, A. J. C. (1949). Acta Cryst. 2, 318.

Acta Cryst. (1966). 20, 279

The Crystal Structure of the Copper(I) Cyanide Hydrazine Complex, CuCN. $\mathbf{N}_{\mathbf{2}} \mathbf{H}_{4}{ }^{*} \dagger$

By Don T. Cromer, Allen C. Larson and R.B. Roof, Jr.
University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A.

(Received 2 December 1964 and in revised form 2 June 1965)
$\mathrm{CuCN} . \mathrm{N}_{2} \mathrm{H}_{4}$ is orthorhombic, space group Pbcm with four formula units per unit cell. The lattice constants are $a=4.684, b=9 \cdot 172$ and $c=7.830 \AA$. The CuCN portion forms planar zigzag infinite chains lying on the mirror. These chains are joined by the hydrazine molecules to form infinite puckered layers which nest together. The copper has four neighbors forming a quite distorted tetrahedron.

Introduction

Copper(I) cyanide forms addition compounds with a great many nitrogen-containing compounds. Because

[^0]of the unusual structures shown by $\mathrm{KCu}(\mathrm{CN})_{2}$ (Cromer, 1957) and $\mathrm{KCu}_{2}(\mathrm{CN})_{3} . \mathrm{H}_{2} \mathrm{O}$ (Cromer \& Larson, 1962) we have decided to investigate the structures of some of these addition compounds. The structure of $\mathrm{CuCN} . \mathrm{NH}_{3}$ has recently been published (Cromer, Larson \& Roof, 1965) and we now report on the hydrazine complex, $\mathrm{CuCN} . \mathrm{N}_{2} \mathrm{H}_{4}$.

[^0]: * Work performed under the auspices of the U.S. Atomic Energy Commission.
 \dagger Presented in part at the IXth Latin American Chemical Congress, San Juan, Puerto Rico, August 1-8, 1965.

